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ABSTRACT 

The Cultural Geography (CG) Model is a multi-agent discrete event simulation 

developed by TRAC-Monterey. It provides a framework to study the effects of 

operations in Irregular Warfare, by modeling behavior and interactions of 

populations. The model is based on social science theories; in particular, agent 

decision-making algorithms are built on Exploration Learning (EL) and 

Recognition-Primed Decision (RPD), and trust between entities is modeled to 

increase realism of interactions. This study analyzed the effects of these 

components on behavior and scenario outcome. It aimed to identify potential 

approaches for simplification of the model, and improve traceability and 

understanding of entity actions. The effect of using EL/RPD with/without trust 

was tested in basic stand-alone scenarios to assess its impact in isolation on 

entities’ perception of civil security. Further testing also investigated the influence 

on entity behavior in the context of obtaining resources from infrastructure nodes. 

The findings indicated that choice of decision-making methods did not 

significantly change scenario outcome, but variance across replications was 

greater when both EL and RPD were used. Trust was found to delay the rate of 

change in population stance due to interactions, but did not affect overall 

outcome if given sufficient time to reach steady state. 
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I. INTRODUCTION 

A. BACKGROUND 

In most modern defense-related ecosystems in the world today, Modeling 

and Simulation (M&S) has established itself as an effective and resource-efficient 

tool for training and preparation of military operations and other undertakings. 

The U.S. Department of Defense (DoD) Modeling & Simulation Coordination 

Office (MSCO) recognizes that “M&S is an enabler of warfighting capabilities. It 

helps to save lives, to save taxpayer dollars, and to improve operational 

readiness” (MSCO, 2012). Wargaming is one common application that allows 

planners and analysts to gain insight on likely combat outcomes, challenges and 

potential pitfalls, and other unintended consequences that cannot be captured by 

traditional analysis methods. In such applications, a key success factor is the 

ability to maintain an extensive database of fully or semi-automated entities that 

represent actors within the scenario, and these entities need to have the ability to 

portray the actions and behaviors of real life combatants. In combat-based 

models and simulations, relatively realistic portrayal of soldiers and units can be 

attained through reference to doctrine and tactics, which dictate rules for how the 

entities would move, interact and react to the situation (Pew & Mavor, 1998; U.S. 

Army PEO STRI, 2012).  

However, in recent times, the spectrum of military operations has 

expanded tremendously, encompassing missions such as Counter-Insurgency 

(COIN), Security, Stability, Transition, and Reconstruction (SSTR) efforts, and 

Humanitarian Assistance (HA) missions. The shift away from conventional 

conflicts and armed, open fighting between states reflects the changing political 

and security landscape in the world today. With this, military leaders need the 

ability and tools to appreciate the planning considerations, courses of actions and 

challenges in such Operations Other Than War (OOTW) and Irregular Warfare 

(IW) situations (DoD, 2008; Ng, 2012). In these areas, the changes that military 

actions bring to the economy, society, and political situation in the area of 
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operations are often the indicators of mission success (Joint Chiefs of Staff, 

1995), and thus the ability to have prior understanding and insights on it is a 

crucial aspect that needs to be addressed. 

Simulating the entities that exist in unconventional environments is 

complex, as the requirements and challenges for modeling non-combatants and 

non-traditional combatants such as insurgent fighters are very different. For 

example, the artificial intelligence (AI) driving the actions of a regular soldier 

agent may be scripted based on rules of engagement and small-unit tactics; 

however, the response of civilians in a crowd to the military presence would vary 

significantly, depending on their demographics, personal circumstances, and 

perception of the immediate and long-term situation around them.  

In this respect, there is a well-recognized need to improve the modeling of 

realistic human social and cultural behavior (HSCB). This would allow greater 

fidelity and realism in simulations in the realm of non-lethal operations, where the 

ability to better captures the “softer” effects of military action and to understand 

the impact on the population and social structure would be an important 

contributor to success (Alt, Jackson, Hudak & Lieberman, 2009; Pew & Mavor 

1998). 

The Cultural Geography (CG) Model developed by the U.S. Army Training 

and Doctrine Command (TRADOC) Analysis Center – Monterey (TRAC-MTRY) 

seeks to enhance existing DoD efforts to model the responses of populations and 

social networks to operations conducted by the military in OOTW and IW 

campaigns (Alt et al., 2009; TRAC-MTRY, 2009). The CG Model is a multi-agent, 

discrete event simulation implemented in Java that models populations as 

entities in a geographical area. The agents, or entities, in the model are based on 

demographic information defining parameters for their beliefs, attitudes towards 

other entities, and actions taken. The cognitive architecture module in the CG 

Model forms the foundation for the artificial intelligence of these entities, and is 

based on well-studied social theory, concepts and models, such as Icek Ajzen’s 

Theory of Planned Behavior (TpB), Bayesian Belief Networks, and representation 
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of homophily and its effects on interactions between entities (Alt et al., 2009; Alt, 

2010; Perkins, Pearman & Baez, n.d.). 

B. PROBLEM STATEMENT 

Currently, the Social Impact Module (SIM) Transition being undertaken by 

TRAC-MTRY and TRADOC Analysis Center – White Sands Missile Range 

(TRAC-WSMR) seeks to fine-tune the CG Model to increase its acceptability by 

the end-users (TRAC-WSMR). One of the possible areas of improvement is to 

simplify the artificial intelligence and agent behavior in the CG Model so that it is 

better understood during implementation and use. 

The complexity of multi-agent systems like the CG Model, which has many 

linkages and interactions, makes it realistic as a representation of HSCB, but 

also increases the difficulty in tracing and understanding the behavior of agents 

in it, and thus the outcome of the simulation. This thesis seeks to investigate two 

key aspects in the cognitive architecture of the CG Model. First, the current 

decision-making process of the entities, which is based on two well-known 

models – Recognition Primed Decision making (RPD) and Reinforcement 

Learning (Baez et al. 2010; Ozcan, Alt & Darken, 2011); and second, the trust 

module within the CG Model, which provides an additional layer of realism (and 

with it, complexity) by simulating the effect of trust, or the lack of it, between 

entities in the scenario (Baez et al. 2010; Pollock, 2011). 

These components in the cognitive architecture enhance the fidelity of the 

agent representation as the entities respond based on a greater range of 

possible options under the effects of the rules that they bring to the model. 

Individual studies have demonstrated statistically significant contributions of 

these components to the CG Model (Ozcan et al., 2011; Papadopoulos, 2010; 

Pollock, 2011). However, in terms of creating a believable, realistic entity that 

performs on par with end-user expectations, it is worthwhile to consider if similar 

entity behavior is attained by implementation of a simplified artificial intelligence, 

i.e., without contributions of varying decision-making methods, or the trust 
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module. Essentially, an acceptable degree of realism in agent behavior needs to 

be incorporated in the model, while avoiding an overly prescriptive and 

cumbersome AI. 

C. OBJECTIVES 

This study thus aims to isolate and investigate the effects of the decision-

making module and the trust module on the outcomes of agent behavior in 

several test scenarios. As part of the process, it would generate greater insight in 

tracing the actions of entities, and provide reasonable understanding of the 

behavior to improve the believability of the model. It would also identify possible 

areas for simplification in the cognitive architecture, to reduce complexity of the 

artificial intelligence in the model without compromising on realism. 

This thesis seeks to address the following key questions: 

1. What significant effects do the decision making and trust 

components provide in the existing cognitive architecture, and do these perform 

as expected / desired? 

2. Can a simplification of the cognitive architecture provide a 

reasonable behavior for agents in the CG Model that is comparable with that of 

the existing framework? 

It is envisioned that the experimental design, scenario development and 

data generated from the study will provide ample references for a better 

understanding of agent behavior in the CG Model. The study will thus facilitate 

fine-tuning of the CG Model (in particular the cognitive architecture) towards 

meeting the requirements of the end-users for the CG Model, as part of the 

Social Impact Module Transition. 

D. METHODOLOGY 

The initial thrust of this study was to isolate the components in the 

cognitive architecture that are of interest, and analyze their effects on outcomes 

and agent behaviors in a simple scenario with one, two or three entities. Only a 
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small subset of the full capabilities of the CG Model were used, so as not to 

introduce excessive effects of external factors which were not being tested. In 

particular, the agent(s) were placed in a specific geographical location, together 

with an infrastructure node from which they periodically obtain consumable 

resources. Scripted actions were injected regularly to trigger responses and 

changes to entity behavior. 

The single entity scenario serves to provide insight on the direct relation 

between the decision-making method and the entity’s behavior and eventual 

outcome of the scenario. The two-entity scenario added the effect of trust, which 

would be visible in the form of communications between the two agents. The 

three-entity scenario furthered the analysis with the addition of another agent 

based on a distinctly different prototype than the original two. This third entity has  

a lesser degree of homophily to the other two, and thus the effects of trust and 

interactions with other agents or the environment would be dissimilar. 

This initial analysis measured outcomes in terms of change in population 

stance, frequency of communications between entities, choice of decision-

making method, and the effects of action selections on agent attitudes and 

stance. Overall, it provided insight on the direct effect that the decision methods 

and trust have on agent behavior and scenario outcome. 

The results of the initial analysis provided the basis for the scenario 

development of the subsequent set of experiments. The scenario complexity was 

increased to create a more realistic depiction of a plausible, real-world situation. 

Six agents and 2 infrastructure nodes were placed in separate geographical 

locations, but within range of communicating with and reaching each other. 

Several revisions to the scenario parameters were tested in order to identify one 

that would best exploit and bring out the differences in the various configurations 

of the cognitive architecture. The final set up was one in which the infrastructure 

nodes were initially insufficient to supply the requirements of the agents, but a 

scripted action was introduced to occur after some time, to improve the state of 

infrastructure. The intent was to trigger changes in agent behavior after the 
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occurrence of the scripted action, and identify the variations in response for 

agents reacting based on the different decision methods and effects of trust.  

The data from the initial experimental runs and the various revisions 

leading up to the final run was analyzed to generate a statistical comparison of 

the outcomes from the basic decision making methods, with and without trust, 

compared to the existing cognitive architecture framework in which entities can 

choose between RPD and Reinforcement Learning, under the effects of trust.  
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II. OVERVIEW OF THE CULTURAL GEOGRAPHY MODEL 

A. DEVELOPMENT 

The ‘Representing Urban Cultural Geography’ project was conceptualized 

in 2006 as an initial prototype for a simulation of a population in a social network 

(Alt, 2010; Baez et al., 2010; TRAC-MTRY, 2009). Continued work over the next 

few years saw its development through various forms, with more components 

and features adding to the depth and complexity of the model, such as inclusion 

of entity actions (e.g., insurgent activity), representations of resources and 

infrastructure nodes, communications, and improvements to agent behavior 

modeling (Alt et al., 2009; Perkins et al., n.d.). The implementation also evolved 

from its earlier usage of the Pythagoras 2.0 agent based combat model (Ferris, 

2008; Seitz, 2008) to its current form, which utilizes the SimKit Discrete Event 

Simulation in Java (Alt, 2010; Buss, 2011). A key feature of the model is its 

framework to allowing modules to ‘plug-and-play’ into the program (Alt et al., 

2009), allowing flexibility and increased functionality. Two recent CG model 

developments are of relevance to this thesis—first, the use of a Reinforcement 

Learning based method for agent action selection (instead of a previous 

Bayesian network representation) (Yamauchi, 2012); and second, the 

implementation of a “trust” module that adds onto existing agent behavior. These 

two components are described in further detail later in this chapter. 

As with all models, the intent for the CG Model is not to create a perfectly 

realistic representation of the world in order predict with absolute certainty what 

would happen in any given scenario—that would clearly be impossible to 

achieve. Rather, it provides a framework for analysts and planners to understand 

a situation and experiment with courses of action and alternatives to assess 

viability, possible outcomes, and potential pitfalls. 
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B. UNDERLYING CONCEPTS AND THEORIES 

The representation of any real world process or phenomena as a model is 

intrinsically not an easy task. This is especially true in military and HSCB-based 

applications where there are a vast number of actors/objects, complex 

interactions, and lack of well-defined relationships and rules governing causes 

and effects. In order for the model to perform well, it must produce outputs that 

are rational and believable with respect to its intended purposes and areas of 

usage. In the field of HSCB modeling, this can be achieved by building the 

simulation based on theories in social science and psychology, along with clear 

understanding of the structure of organizations and demographics of populations 

being represented (Pew & Mavor, 1998). The CG Model is an example of this, as 

it is based on well-studied concepts and theories creating a rational and 

understandable framework for the representation and study of military operations 

in IW. A brief look at some of the underlying concepts and theories used in the 

CG Model follows. 

1. Theory of Planned Behavior 

 Icek Ajzen’s Theory of Planned Behavior serves as the basis for a core 

component in the CG Model. This theory attributes a person’s intentions and 

behaviors to three key factors: his attitude towards the behavior, the subjective 

norms associated with that behavior, and his perceived behavioral control (Ajzen, 

1985; Ajzen, 1991). Attitude towards the behavior describes the individual’s own 

assessment of the behavior, for example if a person is in favor of always 

returning to the same provider to obtain a particular resource or commodity. The 

subjective norm brings out the social dimension as it represents the degree to 

which there is external influence (such as from peers and the community) 

towards the behavior, for example if a person’s local community utilizes a 

particular other resource provider and pressures him to do the same. The 

perceived behavioral control gives a measure of how easily the individual 

believes he can carry out the particular behavior, for example if he has the ability 
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to make the switch to a new resource provider. Ajzen postulates that the 

combination of these three independent factors determines the individual’s 

intention to behave in a particular fashion, and that the intention and perceived 

behavioral control in turn determine the actual behavior adopted (Figure 1). 

 

 

Within the CG Model, these three factors apply to each entity in any given 

scenario, and are quantified to derive a value for each behavior that the agent 

may choose. The attitude towards behavior is influenced by the agent’s 

demographic stereotype and perception of issues relating to that behavior, the 

subjective norm is determined from the behavior of neighboring agents, and the 

perceived behavioral control is determined from the degree that a selected 

behavior brings about the agent’s desired effect (essentially, a measure of 

success of behavior choices). User-defined weights are applied to the calculated 

values of the three factors, and the weighted sum is then used the measure of 

reward gained from a particular behavior (Yamauchi, 2012), as shown in the 

formula: 

Attitude 
towards 
Behavior 

Subjective 
Norms 

Perceived 
Behavioral 

Control 

Intentions Behavior 

Figure 1. Theory of Planned Behavior (From Ajzen, 1991). 
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2. Narrative Paradigm 

The Narrative Paradigm (Fisher, 1984) provides the logic through which 

populations in a real-world area of interest are converted to agent 

representations in the CG Model. Fisher’s work proposes that an individual’s 

experiences in life form a collection of narratives that describe his culture and 

character, shapes his perspective of the world, and affects how he responds to 

events and interacts with others around him. As such, the narrative account can 

be used as a comprehensive and credible data set for the purposes of classifying 

population as different entities, each with its own unique demographic traits and 

stereotypes for responding to the environment. The CG Model directly 

implements this by having each entity represent a subset of the population in the 

area of interest, with the entities ranging from a single individual, to a small group 

or entire community. Input parameters that are required by the simulation to 

adjudicate interactions and behavior of agents are then derived from their 

respective narratives and demographic traits. Table 1 lists the social dimensions 

and categories for the Afghan Helmand Province data, which was used in this 

study (Hudak & Baez, n.d.). 
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Social Dimension Categories 

Family Status 

Inherited 

Achieved 

Unemployed 

Ethno-Tribal Affiliation 

Pro-Government 

Passive 

Marginalized 

Disposition 
Urban 

Rural 

Political Affiliation 

Fundamentalist 

Moderate 

Secular 

Age 
Military Age Male 

SpinGiri1 

Table 1.   Social Dimensions & Categories in Helmand Province 
Population Narratives (From Hudak & Baez, n.d.) 

An entity stereotype is determined by a combination of traits from the list 

above that forms its demographic profile, along with the initial data of the entity’s 

attitude and beliefs towards other entities and stance on pertinent issues in the 

scenario, such as the adequacy of Civil Security in the province. 

3. Homophily 

The concept of homophily is closely tied to modeling interactions between 

different population groups in the CG Model. Homophily refers to the similarity 

between individuals and affects the likelihood that two parties would associate 

and interact with each other. Its effect is most visible in social network contexts, 

where similarities and differences in demographic traits and social factors have a 

pronounced effect on the number and extent of links between people 

(McPherson, Smith-Lovin & Cook, 2001). This suggests that the effects of 

                                            
1 “Spin Giri” is a term referring to senior males who are typically past the traditional 

warrior/military age, are influential and likely to be local decision makers or hold other positions of 
tribal leadership (Hudak & Baez, n.d.). 
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homophily can significantly influence the behaviors of individuals and outcomes 

of scenarios. 

In the CG Model, similarity between entities is determined in accordance 

with this concept of homophily. The stereotypes (i.e., demographic traits) and 

geographical proximity of entities are the main factors in the computation, which 

generates a homophily link weight value for each entity pair in the scenario. This 

link weight is utilized to determine likelihood of communication between the 

entities, and would affect the sharing of information percepts in the scenario (Alt 

et al., 2009). 

4. Decision Making and Learning 

The process of making decisions is a key aspect of human behavior that is 

modeled in the CG Model. Two main concepts are implemented in the action 

selection component of the cognitive architecture—the Reinforcement Learning 

model and the Recognition Primed Decision model.  

a. Reinforcement Learning 

Reinforcement Learning is a technique of machine learning that 

determines how agents should act in a situation to generate an optimal overall 

outcome, based on a specified measure of the estimated value of each possible 

action. In a given environment, an agent receives information percepts that 

determine which state it is in, and selects an action from a set of possible options 

(Russell & Norvig, 2010). The resultant transition to a new state is assessed 

based on a predefined set of rules, typically in the form of some immediate 

reward given to the agent. By determining the overall value of each state-action 

pair (i.e., of choosing a particular action when in a particular state), the agent can 

make decisions that will allow it to gain the most benefit, or expected utility. The 

Q-Learning algorithm (Watkins, 1989; Watkins & Dayan, 1992) is implemented in 

the CG Model. This technique allows the agent to compute and iteratively update 

the expected utility of actions based solely on the rewards received from them, 
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and not requiring the environment to be explicitly known, which is well suited for 

typical scenarios in the CG Model. 

Reinforcement Learning provides agents with the ability to adapt 

well in new situations, where there is a strong impetus for behavior to explore 

possible options and identify the overall optimal course of action. Over time, the 

value of exploring diminishes as most or all options would have been covered, 

and the agent can shift its behavior to exploit only those actions with high 

expected utilities. This idea of trade-off exploration and exploitation is well 

studied; in particular, Ozcan et al. (2011) investigated several techniques for 

driving agent behavior in the CG model to optimize the balance between them. 

The action selection process in the CG Model is based on the Softmax method 

using a Boltzmann distribution, as depicted by the equation: 

   
    ⁄

∑     ⁄ 

 

where 

                                      

                                

               

The probability of selected a particular action is determined by its 

expected utility (as compared to that of other actions) as well as a temperature 

parameter, which influences the exploration-exploitation balance (Baez et al., 

2010; Yamauchi, 2012). Thus, an action has a higher probability of being chosen 

than any other action that has a lower expected utility. In addition, as 

temperature decreases from its initial value towards zero, the probability of 

choosing the action with the highest expected utility tends towards one, which 

gives rise to a purely exploitative behavior. 
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In the context of the CG Model’s cognitive architecture, the 

Exploration Learning (EL) method2 within the action selection module implements 

this generic reinforcement learning algorithm in accordance with the process 

developed by Papadopoulos (2010). Papadopoulos identified that the utility-

based reinforcement learner was able to function well in the context of selecting 

the most appropriate action to drive a specified outcome, depending on the 

settings for parameters such as the initial temperature for the Boltzmann 

Distribution, learning rate and discount factor of the Q-Learning algorithm and 

initial expected utilities of actions. These parameters are user-defined values 

specific to each agent in the scenario, and thus grant the CG Model great 

flexibility for customization of agent reinforcement learning behavior. 

b. Recognition Primed Decision Model 

Recognition Primed Decision is a well-known model for naturalistic 

decision-making propounded by Klein (1989). It describes the theoretical process 

by which humans are able to make rapid assessment of a situation and come to 

a good decision without the need for extensive analysis to identify alternatives 

and then to compare the possible options to deal with the scenario. Klein noted 

that such behavior could be observed in experienced decision-makers in 

operational settings, such as firefighter commanders and small unit leaders in the 

military (Klein, Calderwood & Clinton-Cirocco, 1986; Klein, 1989; Klein, 1999). 

The RPD model suggests that in complex or time-constrained situations, such 

experts in their field are able to recognize cues and patterns that allow them to 

identify an effective course of action quickly, and that this technique would 

surpass a more deliberate, analytical approach in dealing with the situation. 

In the CG Model, the implementation of the RPD model is largely 

based on the reinforcement learning technique described earlier. During a 

simulation run, agents will initially utilize the EL method and choose actions in an 

                                            
2 The term “EL” is used here-on to denote the implementation of the reinforcement learning 

algorithm in the CG model. This maintains consistency with the method name used in the CG 
Model source code and concept diagrams. 
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almost random manner (assuming that the initial expected utilities of actions are 

fairly similar). The number of times that the agent has taken any particular action 

is recorded, and compared to a user-defined minimum threshold, which dictates 

the number of times that an agent needs to perform each possible action before 

it is deemed to have sufficient experience. Upon reaching this threshold, the 

agent will adopt the RPD method of action selection, in which the action with the 

highest expected utility will always be selected during the decision making 

process (Yamauchi, 2012). 

There are limitations in such an implementation—in particular, it 

does not capture some characteristics of the RPD model as described by Klein. 

The implementation in the CG Model is essentially a ‘greedy’ approach of 

reinforcement learning, where an agent has had the ability to explore various 

options in the environment before making a decision. In contrast, for a pure RPD 

approach, this benefit of time and knowledge of action-reward history may not be 

available to the decision maker. Rather, an agent having made no prior action 

selections in a particular scenario or environment (and thus having no 

corresponding estimates of expected utilities of possible actions) would have to 

decide its course of action based on the limited set of percepts it receives, using 

other knowledge such as its prior experience and long term memory. In addition, 

a decision maker in the RPD model would possess the pre-requisite ability to 

recognize changes in situation and discard previously adopted courses of action 

that are no longer effective (Klein, 1989; Klein, 1999). The implemented method 

does not allow agents to have such versatility, thus limiting their ‘expertise’ to 

situations that are relatively static. Significant changes in a scenario would likely 

not result in a responsive change of agent behavior once it has adopted RPD, as 

it would require time for the expected utility of the selected action to drop (until it 

is no longer the ‘best’ action) before the agent chooses another action. 

The RPD model suggests that complex underlying thought 

processes are involved. For example, picking up cues from a situation (that may 

only be perceptible to experts but not novices); recognizing patterns that 
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resemble previously encountered situations; and rapid mental run-through of a 

possible action to determine its feasibility on its own (as opposed to comparing it 

against a set of alternatives). These processes cannot be easily incorporated into 

the existing cognitive architecture of the CG Model, as it could require extensive 

restructuring of the framework, such as distinguishing between percepts received 

by expert entities (versus novice entities). This would better represent the 

significant differences in the performance characteristics of experts in a particular 

field (Proctor & Zandt, 2008), and thus better suit the implementation of a RPD 

model. Furthermore, it could require the introduction of larger and more complex 

long-term memory structures that can be used to compare past scenarios and 

experiences of an agent against a new situation in which it has limited percepts 

and situational awareness. Given the constraints in the cognitive architecture 

framework and the limitations of the current implementation, the RPD method in 

the CG model is an imperfect but necessary substitute for an actual RPD model. 

C. COGNITIVE ARCHITECTURE MODULE 

 

Agent 

Percept 
Umpire 

Perception 
Meta-

cognition 
Long-Term 

Memory 

Selective 
Attention 

Situation 
Formation 

Working 
Memory 

Action 
Selection 

Figure 2. Cognitive Architecture Components (From Yamauchi, 2012). 
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The main components of the cognitive architecture module are shown in 

Figure 2, and their functions are described below. 

1. Percept Umpire 

The Percept Umpire acts as the ‘sensor’ for agents in the CG model. It 

receives information from the environment and entities in the model, such as 

changes to the state of infrastructure nodes, actions carried out by entities and 

consumption of resources by entities. These are scheduled as percept arrival 

events for the entities that are supposed to receive them. 

2. Agent Object 

The Agent component manages the actual state of entities in the CG 

Model, and is responsible for scheduling events such as performing actions, 

consuming resources and passing on percepts to the environment and other 

entities (through the percept umpire). 

3. Perception, Attention, Working Memory and Situation 
 Formation 

When the entity receives percepts via the percept umpire, the Perception 

component of its cognitive architecture manages this incoming information, such 

as monitoring if the agent has the selective attention capacity to accept the 

information; checking the percept for relevancy and storing it in the working 

memory of the agent; and using this to schedule the meta-cognition events which 

are the precursors to the entity’s decision making and action selection processes. 

4. Meta-Cognition and Long-Term Memory 

The meta-cognition and long-term memory components represent the 

entity’s comprehension and assessment of its situation. Key events such as 

changes in attitude towards other entities or issues are scheduled within these 

components. The outcome of these stages is to determine possible courses of 

action for the entity based on the external situation and its internal motivations, 
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attitudes and beliefs, and schedule the event for the agent to select a decision-

making method and then make a decision. 

5. Action Selection 

 

The action selection component (Figure 3) is the main aspect of the 

cognitive architecture that is studied in this thesis. The process begins with the 

list of actions received from the meta-cognition component, which determines the 

type of decision-making method to use—either Exploration Learning (EL) or 

Recognition Primed Decision (RPD). The event to determine this takes into 

account the number of times that each possible action has been performed in the 

past, with the lowest count deemed as the entity’s experience. This gives a 

simple and effective check to assess if the agent has sufficiently sampled all 

Action-Selection 

Identify 
Decision 
Method 

Action 
Selection 

Recognition 
Primed 

Decision 

Exploration 
Learning 

Meta-Cognition 

Identify 
Actions 

Agent 

Execute 
Action 

Figure 3. Action Selection Process (From Yamauchi, 2012). 
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possible state-action pairs to build an accurate estimate of their expected utilities. 

Either the RPD method or EL method is scheduled, depending on whether the 

minimum experience has been reached. Thus, the minimum experience 

threshold parameter (pre-defined by the user) directly controls the amount of 

exploration that entities are allowed before they settle in the ‘greedy’ RPD mode. 

Once the decision-making method has been determined, the entity selects the 

appropriate action based on the probabilities evaluated from the range of 

expected utilities (or, simply selects the action with the highest expected utility in 

the case of RPD), and schedules the event for it to be carried out. 

The action selection process also includes methods to initiate other 

scheduled events such as scripted behavioral actions and the cancellation of 

existing actions if necessary. These are methods are not investigated for the 

purposes of this study. 

6. Communication and Effects of Trust 

The CG Model simulates the interaction of entities and passing of 

information as communication actions taken by agents, such as the sending and 

receipt of percepts between them. This interaction influences the decisions and 

actions of entities, as it influences the parameters that are passed through their 

planned behavior process, in particular their attitudes towards behaviors and the 

effect of subjective norms. Pollock (2011) developed algorithms for representing 

trust between entities in a social structure, which aimed to capture additional 

facets of the relationships and effect of communications between agents. 

Scenario designers initialize entities with parameters that determine their 

frequency of communication with other agents, while their similarity to others (as 

expressed through the homophily link weights) influences who they choose to 

communicate with. The trust filter implemented by Pollock interjected a check 

into the communication process that measures the level of trust between two 

communicating agents. The parameters for initial trust and changes to trust 

levels during run-time are defined in the scenario set up. With this trust filter, 
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entities will still receive, but not accept or process, information received from 

agents that do not satisfy minimum trust requirements (Yamauchi, 2012). Pollock 

(2011) noted that inclusion of trust into the interactions reduced the rate at which 

agent changed their beliefs to align themselves with others. This study will look 

further at the effect on the overall scenario outcomes, as well as possible 

influences in conjunction with the choice of decision-making method. 
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III. ANALYSIS OF DECISION METHOD AND TRUST EFFECTS 

A. DESIGN PARAMETERS 

The experimental set up was designed to test two main aspects in the 

cognitive architecture of the CG Model—the decision making method, and the 

effect of trust. This corresponds to the following six basic test configurations: 

1. Recognition Primed Decision only, without the effects of trust. 

2. Recognition Primed Decision only, with the effects of trust. 

3. Exploration Learning only, without the effects of trust. 

4. Exploration Learning only, with the effects of trust. 

5. Selection of either Recognition Primed Decision or Exploration 

Learning, without the effects of trust. 

6. Selection of either Recognition Primed Decision or Exploration 

Learning, with the effects of trust. This is the typical configuration that is used in 

the current CG Model. 

The tests were conducted using the Tactical Wargame 2011 (Revision 

1160) version of the CG Model, as well as a modified variant of this version for 

the RPD only cases, in which the EL method of action selection was disabled. 

Entities in the RPD only variant would consistently choose the action that has the 

highest expected utility. This implementation serves to remove or reduce the 

ability of agents to gradually explore possible options and iteratively evaluate the 

expected utilities of all actions, and thus mimics human behavior in accordance 

with Klein’s model of RPD. However, it is still limited by the inability to duplicate 

the process of rapidly assessing a new situation and selecting an effective 

solution based on one’s expertise. The test configurations in which entities only 

use the Exploration Learning method were created by implementing a very high 

minimum experience threshold of 1000. This meant that the agents were forced 

to consistently choose the EL method over RPD, as the scenario run times were 
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not long enough for them to have attempted all possible actions at least 1000 

times each. The baseline configuration where entities could adopt either RPD or 

EL was set up using a minimum experience threshold of five. 

The trust effects were tested by disabling the calculations of trust in code 

for the relevant configurations. The result of this is to prevent entities from 

performing checks that would disregard communications from senders whom 

they did not trust.  

All other input parameters that are required for proper functioning of the 

cognitive architecture (in particular, for the Q-Learning Algorithm, Softmax 

algorithm, behavior utility calculations and trust module) were kept constant 

across the 6 test configurations. Table 2 summarizes the key input parameter 

settings that were used. 

Configuration 1 2 3 4 5 6 

Decision Method 
Settings 

EL method disabled 
Min Experience 

Threshold = 1000 
Min Experience 
Threshold = 5 

Trust Filter Settings Off On Off On Off On 

Reinforcement 
Learning Parameters 

Initial Temperature = 0.1 
Discount Factor, Lambda (λ) = 0.01 or 0.1 (see below) 

Behavior Parameters 
Weight of Attitude towards Behavior = 0.3 

Weight of Subjective Norms = 0.3 
Weight of Perceived Behavioral Control = 0.3 

Trust Parameters3 

Default Trust = 0.5 
Learning Rate = 0.8 

Discount Factor = 0.3 
Trust Temperature = 0.5 

Table 2.   Input Parameters for six Basic Test Configurations. 

                                            
3 Pollock (2011) provides a detailed investigation of the effects of these parameters, which 

are used in the algorithms pertaining to the reinforcement learning of trust, and affect the rate at 
which entities’ trust fluctuate during the scenario runs. 
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In addition to the six test configurations, three other factors were varied for 

the initial set of tests: (1) the Reinforcement Learning Discount Factor, Lambda 

(λ), (2) the effect of scripted actions taking place during the scenario, and (3) the 

initial belief and issue stance of entities in the scenario. These factors had earlier 

been studied as part of the ongoing testing and evaluation by TRAC-MTRY, and 

were incorporated in the initial run to extend the number of data points over 

which the basic configurations could be tested. 

The reinforcement learning discount factor (λ) was tested at two levels 

(0.01 and 0.1). The former corresponds to behavior that favors short term 

rewards, as the value of rewards (i.e., their contribution to expected utility of an 

action) diminishes more rapidly with time, while the latter corresponds to 

behavior that favors longer term rewards.  

The effect of scripted actions was set to be either positive or negative, 

while the initial belief and issue stance of entities was varied over 14 possible 

cases. Further elaboration of these two factors is provided in the next section. 

B. TEST SCENARIO 

For the purposes of the initial run, a simplistic test scenario was used in 

order to minimize interactions from other components in the CG Model, and allow 

the effects of the test configurations to be isolated. This test scenario was 

developed based on the Helmand Province Case Study developed by the IW 

Study Team at TRAC-MTRY (Baez et al., 2010; Hudak & Baez, n.d.). The study 

encompassed several districts in the province, and generated a significant 

amount of data and analysis pertaining to the population demographics and their 

views three key issues—security, infrastructure and governance. It serves as a 

well-documented starting point for the purpose of scenario creation in the CG 

Model by providing rich datasets that facilitate the development and selection of 

initial parameters, and has been used in several other studies conducted by 

TRAC-MTRY (Alt et al., 2009; Perkins et al., n.d.; Wiedemann, 2010). 
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In the test scenario, two identical infrastructure nodes were sited within the 

area of operation, and constantly provide a consumable resource (electricity) to 

either one, two or three agents in the scenario. These agents consume the 

resource at a constant rate, and may carry out the action of visiting the 

infrastructure nodes to restock their supply as dictated by their behavior. 

In the 1-agent and 2-agent cases, the entity prototype was assigned the 

social dimensions of Inherited family status, Pro-Government ethno-tribal 

affiliation, Urban disposition, Secular political affiliation, and Spin Giri age group. 

This is a typical entity used in the CG Model, abbreviated as I_P_U_S_Sp. In the 

3-agent cases, the third entity was assigned social dimensions that were 

dissimilar from I_P_U_S_Sp – Unemployed, Passive, Rural, and Moderate, and 

Military age (Un_Pa_R_M_Ma). This distinction reduces the degree of homophily 

between the third agent and the other entities, to lower their homophily link 

weights and bring out any differences in behavior due to the effects of trust. 

The population stance on the issue of civil security was used as the 

primary measure of scenario outcome, and the overall effects of the test 

parameters. This issue stance represents the percentage of the population (more 

precisely, of the groups represented by each entity in the scenario) who perceive 

that the level of civil security in the province is adequate. This issue stance is 

affected by many factors in the model, such as the beliefs of a particular 

demographic group as determined by their population narrative (e.g., the belief 

that Coalition Forces are not trustworthy or that the area is not a safe). Also, the 

occurrence of events during run-time (such as Insurgent or CF activity) and 

information passed on from other entities during the scenario (Yamauchi, 2012) 

are significant influences on the issue stance..  

In addition, each entity possesses a set of attitudes and behaviors towards 

certain groups or issues. This is quantified as an observed attitude and behavior 

(OAB), which translates to one of five levels—positive-active (PA), positive-

passive (PP), neutral (N), negative-passive (NP), and negative-active (NA). The 

OAB of interest to this study is that pertaining to the entities’ perception of CF 
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(OABtowardsCF). An entity that is positively inclined towards CF but does not 

actively carry out actions in support of them would have an OABtowardsCF value 

that falls in the range corresponding to positive-passive; an entity that is 

negatively inclined and is likely to choose actions such as aiding insurgents 

would have an OABtowardsCF in the level of negative-active (Yamauchi, 2012). 

Seven different settings were used for the initial belief and issue stance 

(“casefiles”) of the entities in the test scenario. These correspond a combination 

of high/low extremes and mid-point levels for these two parameter (issue stance 

on civil security and OABtowardsCF), and are shown in the summary of design 

factors/levels in Table 3. 

In addition, a periodic scripted action was implemented in the scenario, 

representing the operation of Coalition Forces (CF) within the area that is visible 

to the agent(s). This scripted action was programmed to have a positive effect on 

the population stance on the issue of civil security in the area for half of the test 

cases, and a negative effect for the rest.  

A final parameter that was varied was the size of dataset used as input 

parameters. This represents the sample size of the data collection process that is 

used to generate the entity stereotypes based on the population narratives. A 

setting of either 1000 or 100 respondents was used, to verify that reduction of the 

sample size would not have an impact on the consistency of results or overall 

outcome of scenario. 

With 6 basic configurations – three settings for decision method (RPD / EL 

/ Both) times two settings for trust (ON / OFF) – two settings for discount factor, 

seven settings for initial belief and stance, two settings for scripted action effect, 

and two settings for data sample size, a total of 336 design points were 

generated for the 2- and 3-agent scenarios. One hundred sixty-eight design 

points were generated for the 1-agent scenarios (as the trust-ON setting is 

irrelevant in this context). This created a total of 840 design points for the initial 

run. Table 3 provides a summary of the factors and settings used. 
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Factor 
Number 

of 
Settings 

Settings 

Number of 
Agents 

3 

1-Agent: I_P_U_S_Sp_1 

2-Agent: I_P_U_S_Sp_1, I_P_U_S_Sp_2 

3-Agent: I_P_U_S_Sp_1, I_P_U_S_Sp_2, 
Un_Pa_R_M_Ma_1 

Decision 
Method 

3 

RPD Only 

EL Only 

Both 

Trust 2 
On (Not applicable in 1-Agent case) 

Off 

Discount 
Factor 

2 
0.1 

0.01 

Scripted Action 
Effect 

2 
Positive 

Negative 

Dataset 
Sample Size 

2 
100 Respondents 

1000 Respondents 

Initial Casefile 7 

Civil Security Stance: 100% Adequate 
OAB towards CF: 99% PA, 1% NA 

Civil Security Stance: 99% Adequate 
OAB towards CF: 99% PA, 1% NA 

Civil Security Stance: 50% Adequate 
OAB towards CF: 99% PA, 1% NA 

Civil Security Stance: 50% Adequate 
OAB towards CF: 50% PA, 50% NA 

Civil Security Stance: 50% Adequate 
OAB towards CF: 1% PA, 99% NA 

Civil Security Stance: 1% Adequate 
OAB towards CF: 1% PA, 99% NA 

Civil Security Stance: 0% Adequate 
OAB towards CF: 0% PA, 100% NA 

Table 3.   Summary of Design Factors and Settings. 

Each design point was replicated 30 times, using a fixed set of 30 random 

seeds for all design points. The scenario was allowed to run for 140 days 

(simulation time), to allow sufficient time for trends in the performance measure 

to be seen, and steady state outcome to be observed. 
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C. OUTPUT PROCESSING 

Dataloggers in the CG Model were used to record pertinent data from the 

scenario replications during run-time. The key parameters that were measured 

are shown in Table 4. 

Parameter Datalogger(s) Used Description 

Civil Security 
Issue Stance 

PositionChange-
PeriodicDataLogger 

PositionChange-
DataLogger 

Each entity’s stance on the issue of civil 
security was recorded on a daily basis to 
monitor its change over time. Specific events 
(e.g. receipt of communications) resulting in 
changes in stance were also recorded. 

Choice of  
Decision Method 

and Actions 

DecisionMethod-
DataLogger 

SelectAction-
DataLogger 

Every occurrence of the event where an entity 
chooses a particular decision method (RPD or 
EL) was logged, along with the entity’s level of 
experience at that time. The action selected as 
a result of the decision method used, and the 
expected utility of the action, were also 
recorded. 

Communications 

CommCount-
DataLogger 

Communication-
DataLogger 

All communication events between entities 
were recorded to keep count of the total 
number received by each entity, and the 
number that the entity rejected (due to the trust 
effects) The trust level between the two entities 
involved in each communication event was 
also logged. 

Degree of 
Homophily 

between Entities 

HomophilyNetwork-
DataLogger 

The homophily link weights between any 2 
entities in the scenario were recorded 
periodically (every 30 days). 

OAB 
PositionChange-
DataLogger 

The OAB of entities towards CF was recorded 
for each event that triggered any changes in 
the level. This log measured the percentage of 
the population represented by each entity that 
fall into each of the 5 levels of OAB. This 
parameter was tracked for the purpose of 
cross-referencing with the issue stance, but not 
used directly as a measure of scenario 

outcome.4 

Table 4.   Description of Key Parameters Measured. 

                                            
4 Prior testing and evaluation by TRAC-MTRY had suggested that issue stances were more 

appropriate and better understood as measures of changes and outcomes in scenarios, 
compared to OABs. (J. Caldwell & H. Yamauchi, personal communication, July 2012). 
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Due to the large volume of data generated5, a combination of manual and 

batch-file processing methods were used to organize the outputs into similar 

dataset groupings. These were further processed with SAS Institute’s JMP Pro 

(version 10) statistical software to consolidate datapoints into relevant 

parameters, such as mean and variance across replications, trends over time 

periods in the scenario, and differences between entities and initial casefiles. 

JMP was also used for the analysis of the data and generation of plots. 

D. RESULTS – SINGLE AGENT SCENARIO 

The single agent scenario demonstrated the effects of the design factors 

at the most primitive level. The effects of trust, homophily and communication 

were not seen in this scenario as there were no inter-agent interactions taking 

place. 

1. Civil Security Issue Stance 

Figure 4 shows the trend of civil security stance of the single entity 

I_P_U_S_Sp in the case where RPD is fixed as the only option for decision 

making method. The 28 plots depict the differences across the 14 different 

casefiles (7 variants of initial stance and OAB with 2 settings for the effect of 

scripted actions) and settings for the discount factor. From left to right, the 

columns correspond to the casefiles with initial stance of 100% inadequate, 99% 

inadequate, 99% adequate, 50% adequate with 99% PA, 50% adequate with 

50% PA, 50% adequate with 99% NA, and 100% adequate. The upper 14 plots 

are for the cases where the scripted action has a negative effect on the entity, 

while the lower 14 are for the cases with a positive scripted action effect. The 

plots on the first and third rows correspond to the discount factor of 0.01, while 

the second and fourth rows show trends with discount factor set to 0.1. The 

change in scenario outcome as a result of the scripted action conforms to 

                                            
5 Eight output files in comma-delimited value format were generated for each design point, 

corresponding to 6720 data files in total. Each file contained approximately 4200 to 12600 
datapoints, depending on the type and frequency of parameters logged. 
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expected behavior—the shift in entity perception of civil security issue stance is 

in the same direction as the effect caused by the periodic scripted action for all 

test cases.  

 

The variation of both the trend and final state of civil security stance was 

observed to be unaffected by the decision method adopted by the entity in these 

test cases. The plots for the settings of EL and BOTH for the decision method 

were identical to that of the RPD case. This was a clear indication that the 

decision method was having little or no effect on the final scenario outcome in 

this set of single agent test cases, which was to be expected, in view of the 

limited impact that the agent’s action selection had in the simple scenario set up. 

2. Effect of Initial Stance and OAB 

The initial casefiles used for the entity had a significant impact on the 

scenario outcome. Comparing the cases of 100% inadequate and 99% 

inadequate, the difference of just 1% resulted in a significant impact on the final 

Figure 4. Civil Security Stance over Time - RPD Method. 
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level of the issue stance, seen in the bottom left most plots of Figure 4. The same 

effect was noted in the opposite case, where the initial stance was either 100% 

adequate or 99% adequate. However, from the 3 casefiles where the population 

started at 50% level of perceived civil security adequacy, it was noted that the 

initial OAB towards CF did not cause any change in the final outcome of the 

scenario. These observations point to the importance of the initial data 

development process in the CG Model, which constructs casefiles and agent 

prototypes used in any scenario. The effect of initial stance is further studied in 

the subsequent test scenarios. 

3. Effect of Discount Factor and Size of Dataset 

A highly notable observation from the single agent dataset was the 

significant effect of the discount factor setting on the rate of change of issue 

stance. Comparing across all test cases with a reinforcement learning discount 

factor of 0.01, the simulation time required for the issue stance to reach its final 

steady state was between 3 to 6 days. However, with the discount factor set at 

0.1, the time taken ranged from 36 to 49 days. Figure 5 shows the distribution of 

time taken to reach steady state for replications of the test cases based on an 

initial stance of 50% adequate, with 50% of the population being positive-active 

towards CF. The final value of the issue stance was unaffected by the different 

settings of discount factor. However, it was noted that the issue stance at steady 

state for the case was affected by the size of dataset used (i.e., the number of 

respondents on which the casefiles were based). Figure 6 shows the combined 

effect of the discount factor and number of respondents across the 30 

replications of the design point. 
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Figure 5. Time Taken to Reach Steady State Outcome in Issue Stance for 
Different Discount Factor Settings. 

Figure 6. Effect of Discount Factor and Number of Respondents on Civil 
Security Issue Stance. 
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E. RESULTS – TWO-AGENT SCENARIO 

The results of the two-agent scenario were generally in line with the key 

observations made from the single agent cases. The data analysis and post 

processing focused on the design points with the settings of 100 respondents 

and discount factor of 0.01. This was in consideration of the fact that the cases 

for 1000 respondents was largely similar to those for 100 respondents, and that 

the discount factor of 0.1 resulted in behavior (and corresponding scenario 

outcomes) that shifted too rapidly. 

1. Civil Security Issue Stance 

 

Figure 7 shows the trend of civil security issue stance over time, for the 

cases with initial stance at 50% adequacy and positive effect of scripted actions. 

The stance of both entities remained fairly close to each other throughout the 

scenario run time, with variations in mean of less than 2% at any point in time. 

Significant spread was noted across the replications in all six test configurations 

for the interval in which the stances were shifting from their initial to final states, 

with a range of up to 22% within each discretized time block of 10 days. The final 

Figure 7. Civil Security Issue Stance for 2-Agent Scenarios. 
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outcomes and time to reach steady state were comparable to the earlier single 

agent test cases, with little variation observed between the different decision 

methods and effects of trust. 

2. Decision Method and Action Selection  

The effects of decision-making were studied in detail in the two agent 

scenarios. Figure 8 is a representative plot of the outcomes of decision-making 

processes for the 50% initial stance cases, showing the experience levels of the 

entities over time, across the 30 replications of each design point.6  

 

Figure 8. Experience Level Heatmaps over Time 

In the design points where the entities could adopt either RPD or EL 

(heatmaps on left), EL was observed to be the initial choice for decision-making 

method, as expected. Entity behavior switched to the RPD method for 18 out of 

30 replications in the design point where trust was OFF, and 11 out of 30 in the 

design point where trust was ON. In the cases where EL was maintained 

throughout the entire duration of the replication, it was observed that the 

                                            
6 Blanks within the plots indicate points in time where the event of selecting a particular 

decision-making method did not occur, and thus no experience level was logged. 
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experience level of the entities in those runs remained fairly low throughout the 

scenario. In contrast, with the design points that only allowed EL (plots in center), 

entity experience continued to rise to significantly higher levels for the majority of 

replications. Furthermore, the experience that entities attained was comparable 

to the cases of RPD method only (plots on right). 

The observed trend in experience levels of entities using the different 

decision-making methods highlights a peculiarity of the current implementation of 

the cognitive architecture. As the RPD method here is essentially a reinforcement 

learning based technique with a greedy approach, entities that switch to RPD 

would always select the action that yields the best return. This would suggest 

that a certain set of actions would consistently not be chosen, if they were 

associated with the lowest expected utilities, and thus the experience of entities 

should remain at that value (of the minimum number of times which those actions 

had been performed). This is clearly not the case in the data observed, as the 

RPD only cases showed continued rise in experience level, suggesting that other 

factors are influencing change in behavior or utility of the actions that would 

otherwise not be used. The EL behavior seen in the plots appear to conform to 

expectations, with a gradual increase in experience over time, as the entities 

would be likely to attempt all actions and thus increase the minimum number of 

times which each has been chosen. These results suggested the need for further 

study of the decision method selection process and action selection process. 

Figure 9 shows the mean expected utilities of the three possible actions 

pertaining to infrastructure consumption. Agents are able to choose between 

using their existing service provider (“Use_Current_Provide”), switching to 

another (“Seek_New”), or decide not to attempt to restock their resources 

(“Do_Nothing”). The expected utilities for the actions of seeking a new provider or 

remaining with their existing ones are expected to be similar in this case, as the 

nodes available to the entities are essentially identical. The trend of expected 

utilities over time indicate that entity behavior is reasonable in this case—over 

time, they would continually make the choice of seek out either infrastructure 
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node to resupply themselves, instead of doing nothing. However, it is noteworthy 

that there is no marked difference for the different decision-making methods or 

trust settings. 

 

Figure 9. Expected Utility of Infrastructure-related Actions. 

3. Homophily and Communications 

The homophily link weight between the two entities did not vary with the 

different decision methods and trust settings. However, the effect of the trust was 

observed from its effect on communications between the entities. The initial trust 

level between the entities in these cases was set at 0.5, which rapidly increased 

to close to the maximum of 1.0 as expected, given the high degree of homophily 

between them (since they are built on the same prototype). The percentage of 

communications between the entities that were accepted thus increased over 

time, from an initial 66% to 87% by the end of the simulation (Figure 10). 
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Figure 10.  Communications Acceptance/Rejection Rate. 

F. RESULTS – THREE-AGENT SCENARIO 

1. Civil Security Issue Stance 

The civil security stance in the 3-agent scenario showed a similar trend 

over time as that of the 2-agent case (Figure 11). 

 

Figure 11. Civil Security Issue Stance for 3-Agent Scenarios. 
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The new agent, Un_Pa_R_M_Ma_1 demonstrated behavior similar to the 

original two, but took a longer time to reach its final state in issue stance. The 

effect of communication was clearly the cause of this behavior—at the 40 day 

mark, the Un_Pa_R_M_Ma_1 entities in the test cases where the trust module 

was deactivated had all reached steady state of 98% adequate. In contrast, for 

the cases with trust on, the mean issue stance in the same time period was 96%, 

with a 3% standard deviation and range from 87% to 98%. Figure 12 and Table 5 

compare the standard deviation of issue stance over time under the effects of 

trust. The variance is significantly increased for all cases where the trust module 

is active, but not affected by the decision method used.  

 

Figure 12. Effect of Trust on Deviation in Issue Stance. 

Entity Trust Max. Range Peak Std Dev. 
Max.Time to 
Steady State 

I_P_U_S_Sp_1 
ON 30.4% (Day 19) 6.5% (Day 22) Day 43 

OFF 18.4% (Day 15) 4.5% (Day 16) Day 28 

I_P_U_S_Sp_2 
ON 27.2% (Day 17) 6.6% (Day 18) Day 32 

OFF 20.8% (Day 15) 4.8% (Day 17) Day 27 

Un_Pa_R_M_Ma_1 
ON 21.5% (Day 26) 6.4% (Day 27) Day 44 

OFF 18.9% (Day 10) 4.5% (Day 17) Day 34 

Table 5.   Effect of Trust on Range and Deviation of Issue Stance. 
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2. Decision Method and Action Selection 

The experience levels of the three entities were comparable throughout 

the progress of the scenario, and the results showed behavior similar to the 

2-agent cases. Additionally, as seen in Figure 13, the trend of experience gain by 

entities in RPD or EL only modes was distinctly different from the cases where 

both decision methods were admissible. As before, the expected behavior in EL 

mode matched the experience trend observed, but that of RPD mode did not. 

These findings reinforce the notion that the implementation of RPD in the CG 

Model is in essence a reinforcement learning type approach, but also point out 

that the process of choosing between EL and RPD alters the behavior of the 

entities such that the outcome differs from a pure EL or pure RPD scenario. 

 

Figure 13. Entity Experience over Time. 
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3. Homophily and Communications 

The degree of homophily was expected to differ between the I_P_U_S_Sp 

entities and the single Un_Pa_R_M_Ma entity. The earlier data indicating the 

slower response of the Un_Pa_R_M_Ma in terms of civil security issue stance 

pointed to the possibility that it was not receiving communications as readily due 

to its lower homophily link weigh with the other entities. The data shown in 

Figure 14 provides some evidence of this behavior, indicating that 

communications between I_P_U_S_Sp and Un_Pa_R_M_Ma averaged at an 

acceptance rate of 85.4%. In comparison, the communications between the 

I_P_U_S_Sp entities was accepted 86.1% of the time. More significantly, the 

volume of communications between I_P_U_S_Sp entites averaged 1.21 times a 

day, against 0.94 times a day for Un_Pa_R_M_Ma_1 to either of the other two 

entities. This indicated that the effect of homophily (determining the  entities’ 

desired to communicate with each other) was far more significant compared to 

trust (which determined acceptance of communications received). Comparison of 

the homophily link weights and trust levels between entities did not yield any 

other new findings. 

 

Figure 14. Communications Acceptance/Rejection Rates Between Entities in 
3-Agent Scenario. 
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IV. FURTHER TESTING AND EVALUATION 

A. DESIGN PARAMETERS 

The results and analysis of the initial set of design points suggested that 

the effects of decision method and trust were being overshadowed by other 

design factors in the model. The next phase of the testing and evaluation was 

thus developed to maximize the possible effects from these components of the 

cognitive architecture. In addition, factors that were found to be less significant or 

less relevant to test purposes were removed. The discount factor was fixed at 

0.01, and only the casefiles based on 100 respondents were used. 

The initial issue stance and OAB of entities was seen to have significant 

influence on the behavior and effect on scenario outcome. Several levels were 

tested, of which four were chosen for final set of design points. Most importantly, 

the periodic scripted action effect was removed and replaced with single action, 

as described in test scenario description in the next section. Table 6 shows the 

24 design points that were used for the final run. 

 

Design 
Point 

Decision 
Method 

Trust 
Initial 

Stance 
 

Design 
Point 

Decision 
Method 

Trust 
Initial 

Stance 

951 
RPD 

ON 

99% 
Adequate 

 963 
RPD 

ON 

55% 
Adequate 

952 OFF  964 OFF 

953 
EL 

ON  965 
EL 

ON 

954 OFF  966 OFF 

955 
BOTH 

ON  967 
BOTH 

ON 

956 OFF  968 OFF 

957 
RPD 

ON 

75% 
Adequate 

 969 
RPD 

ON 

50% 
Adequate 

958 OFF  970 OFF 

959 
EL 

ON  971 
EL 

ON 

960 OFF  972 OFF 

961 
BOTH 

ON  973 
BOTH 

ON 

962 OFF  974 OFF 

Table 6.   Design Points for Final Run. 
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B. TEST SCENARIO 

Six agents were utilized for the final round of testing. These comprised 

three I_P_U_S_Sp and three Un_Pa_R_M_Ma entitites. The scenario was also 

expanded geographically – the two infrastructure nodes were placed at a 

distance of about 10 hex-grids apart, and the agents were distributed around 

them as shown in Figure 15. Each grid represents an area of approximately 

1-mile radius. 

 

Figure 15. Map of Area of Operations (From Yamauchi, 2012). 

I_P_U_S_Sp_3 

I_P_U_S_Sp_2 

I_P_U_S_Sp_1 

Infrastructure 2 

Infrastructure 1 

Un_Pa_R_M_Ma_3 

Un_Pa_R_M_Ma_2 

Un_Pa_R_M_Ma_1 
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With this set up, the effects of geographical location, communications 

between entities regarding infrastructure, and success rates of visiting the nodes 

will come into play. The effect of infrastructure visits was adjusted to have 

variable impact on entity stance—if an agent succeeds in restocking when he 

visits a node, there would be a 75% likelihood for a positive effect on stance, and 

a 25% otherwise. However, this is only one of the factors determining any overall 

change in stance, because the influence of other parameters also contributes to 

overall behavior choices and net change in issue stance. 

The periodic scripted action used previously was replaced by a single 

action that occurred at a fixed time. The scenario was initialized with one of two 

infrastructure nodes inoperable, and the other at a minimal state (Table 7 

provides the definition of infrastructure operation states). At day 90 of the 

scenario, the scripted action for CF to improve the inoperable infrastructure node 

takes place, restoring its state to normal. The operation state of the other node 

remains minimal. This setup causes entities to fail if they attempt to restock 

consumables from the first node prior to day 90, and to periodically fail when they 

attempt to restock from the second node throughout the scenario (essentially, 

only 1 of 7 attempts would succeed). 

 

State openTime closeTime numberServers queueCapacity 

Normal 360 0 1 10 

Reduced 2 5 1 10 

Minimal 1 6 1 10 

Inoperable - - - - 

Table 7.   Definitions for Infrastructure Operation States.7 

                                            
7 Several configurations for the initial state and state after scripted repair action were tested 

to develop this set of parameters and scenario settings, such as varying the queue capacity, 
transfer rates and resource capacity of the nodes. These settings mean that the node at minimal 
state will be available for 1 out of every 7 days. Entities attempting to restock on the days that it is 
closed will experience a failure in the action. Those visiting on the day it is open will most likely 
receive their requested resource, as the server and queue capacity is sufficient to provide for all 
entities in the scenario (unless balking or reneging occurs due to other entities being in the queue 
ahead of it). The inoperable state always fails to provide resource to the visiting entity. 
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Thus, the expected behavior is for entities to initially experience a decline 

in stance, due to the inability to receive the requested resource. Also, the choice 

of actions would favor Node 2 over Node 1. After the action of infrastructure 

improvement, Node 1 becomes more viable of the two, and agents who maintain 

exploratory behavior are expected to realize this, possibly communicate with 

other entities, and thereby cause action choices to shift in favor of Node 1. The 

effect on stance is expected to be favorable, since the entities would then 

experience a high success rate, and thus the overall scenario outcome should 

show an improvement of issue stance over time. 

The scenario length for this set of tests was increased to 360 days, 

allowing for trends and outcomes to stabilize and possibly reach their steady 

state levels. Thirty replications were run for each design point, using the same 

seeds as before. 

C. OUTPUTS 

Additional dataloggers were used for this set of tests (Table 8), including 

new code that was added to the ongoing revisions of the CG Model. In particular, 

the BehaviorEffects-Datalogger was added to track all occurences of entities 

visiting either infrastructure, and capture their success/failures as well as the 

resultant effect on their issue stance. 

 

Parameter Datalogger(s) Used Description 

Infrastructure 
Visits 

BehaviorEffects-
DataLogger 

Record of infrastructure visits on both nodes, 
outcome (succeed / fail), and effect on civil 
security issue stance (increase / decrease / 
unaffected). 

Other 
Parameters 

Location-DataLogger 

State-DataLogger 

Behavior-DataLogger 

Action-DataLogger 

Additional parameters were recorded for cross-
referencing and checking purposes. These 
were the  locations of entities (to check entity 
movement around the area), state of 
infrastructure nodes, behavior choices of 
entities and occurrence of scripted actions. 

Table 8.   Description of Additional Key Parameters Measured. 
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D. RESULTS 

1. Civil Security Issue Stance 

The effect of initial population stance on the scenario outcome is clearly 

visible in Figure16. As expected, initial trend in civil security is negatively-sloped, 

given that the infrastructure in the scenario is unable to provide consumables for 

the entities most of the time. The introduction of the scripted event at Day 90 

triggered the change in behavior, seen as either a reduction of the decline in 

issue stance, or a change in the direction of the trend. 

 

 

Figure 16. Civil Security Issue Stance for Different Initial Stance Levels. 

In the CG Model, the initial issue stance determines the base effect from 

which the change caused by future actions are calculated. This implementation is 

responsible for the phenomena seen above, whereby the cases with a very high 

initial issue stance appears to be least affected by improvements brought about 

after the scripted action occurs. Further discussion of these effects is presented 

with the results of entity behavior and action selection in the next section. 
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Considering the case of 50% initial stance as an example (Figure 17), the 

decision method alone did not demonstrate significant effect on scenario initially. 

The trend of civil security issue stance over time for all entities followed a tightly 

bound range up till the point when the scripted action occurred. However, the 

effect of trust reduced the rate of change of entities’ issue stances, resulting in a 

highly percentage of adequacy at the time the scripted action occurs. After day 

90, the increase in choices available to the entities generated sufficient variation 

in the action-selection process to cause some degree of spread in the outcome 

at the end of the scenario as compared to the earlier simple scenarios. Figure18 

and Table 9 provide the breakdown of the civil security issue stance at the 

conclusion of the test scenario (day 360) for the 6 configurations of decision 

methods and trust. The results indicate that the overall scenario outcome is 

better (i.e., a higher percentage of the population feel that civil security is 

adequate) when the entities used both RPD and EL methods, compared to only 

one particular decision method. 

 

 

Figure 17. Civil Security Issue Stance for Initial 50% Adequate. 
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Figure 18. Distribution of Outcomes - Civil Security Stance at Day 360. 

Configuration Mean Stance 
(% Adequate) 

Standard 
Deviation 

95% Confidence Interval 

Method Trust Lower Bound Upper Bound 

BOTH 
OFF 39.4% 9.5% 38.0% 40.8% 

ON 46.1% 8.1% 44.9% 47.3% 

EL 
OFF 36.9% 6.3% 36.0% 37.8% 

ON 41.7% 5.1% 41.0% 42.4% 

RPD 
OFF 37.6% 5.7% 36.8% 38.4% 

ON 41.0% 5.1% 40.3% 41.7% 

Table 9.   95% Confidence Interval Levels of Civil Security Stance at Day 
360 (Combined Mean across all Entities in Scenario). 
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2. Decision Method and Action Selection 

The infrastructure-related choices made by entities in the final scenario 

provided further insight to their behavior and the effects of the decision methods. 

The actions selected and resultant effects are summarized in Figure 19, which 

includes the data from all 24 design points. 

 

 

Figure 19. Infrastructure Node Visitation Outcomes and Effects. 

 The behavior of the entities provides a key insight that the outcome of an 

entity’s visit to a node can generate both positive and negative effects on its 

issue stance, regardless success or failure to obtain the resource requested. In 
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particular, during the second half of scenario run time, there is a significant 

increase in instances of actions that do not cause any change to stance. The 

visitation rates of the two infrastructure nodes (Figure 20) provide a tell-tale sign 

that entity behavior is not ideal in the model / scenario—despite an total failure 

rate of 86.2% experienced with infrastructure node 2, entity behavior does not 

change to avoid it, as would be expected for a reinforced learner. 

 

 

Figure 20. Infrastructure Node Visitation Rates and Outcomes. 
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Data from the action-selection process was used to investigate the cause 

of such agent behavior. Figure 21 plots the expected utilities of the three possible 

infrastructure-related actions on a logarithmic scale for all 24 design points in the 

scenario. The increase in expected utility of seeking a new provider corresponds 

to the occurrence of the scripted action at day 90; however, the action of 

remaining with an entity’s existing provider also increases in value over time. 

This trend results in agent behavior that does not focus on either choice.  

 

 

Figure 21. Expected Utility of Infrastructure-related Actions in 6-Agent 
Scenario. 

Further analysis of the source code and consultation with the programmer 

(H. Yamauchi, personal communication, July 2012) revealed that the existing 
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algorithm for allocation of rewards to the actions does not account for the state of 

the entity, which explained the behavior observed in the infrastructure-related 

action selection process. Entities that visited a node and received an unfavorable 

outcome would have a higher probability of choosing to seek a new provider on 

their next action selection. However, upon switching to the better node, the 

expected utility for seeking a new node would be higher than the action of staying 

with that new provider. The resultant behavior would cause the agent to switch 

back and forth between nodes, seemingly with no regard to the outcomes from 

the infrastructure visits.  
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V. CONCLUSION 

The CG Model utilizes a highly complex cognitive architecture module in 

order to accurately and realistically depict the behavior of civilian populations in 

an IW environment. The critical process of entity decision making is based on 

well-accepted social science theories that provide a sound framework for the 

artificial intelligence of entities. The decision methods and trust module used in 

the CG Model were found to perform adequately, despite some deviations from 

expected behavior that were attributed to limitations in the implementation of 

these conceptual models. 

A. EFFECTS OF DECISION METHOD 

The process of decision method selection in the CG Model utilizes a 

reinforcement learning algorithm in two ways—as an exploratory approach, to 

allow entities to try out possible actions and build up their knowledge of expected 

utilities; and as a greedy approach, to simulate a RPD model of decision making. 

The test scenarios showed that the EL approach was adequate in generating 

agent behavior which performed as expected. The RPD approach generated 

similar scenario outcomes to the EL mode, in terms of overall trend and end state 

of civil security issue stance, behavior actions and interactions between entities. 

The combination of both methods, as implemented in the existing CG Model, 

generated scenario outcomes over a far larger range of possibilities, with close to 

twice as much variation as compared to either RPD or EL alone. However, the 

mean outcome was shown to be fairly similar across the design points tested. 

The effect of other parameters, in particular the initial stance of the entities, was 

far more significant in influencing the overall stance at the end of the scenario.  

The significant increase in variance generated when both RPD and EL 

methods are used suggests that this implementation would be useful for the 

purpose of exploring potential outcomes for any given set of inputs, as it would 

cover a larger sample space.. However, continued development to independently 



 54 

refine the RPD method would also be important to allow the model to better 

capture the effects of ‘expert’ entities (vis-à-vis a novice that would require 

several rounds of exploratory behavior to attain the same experience). Also, the 

existing cognitive architecture has limitations in associating utilities to state-action 

pairs instead of actions alone, which resulted in behavior that deviated from 

expectations, but still allowed entities to make choices and influence the outcome 

of the scenarios in a coherent manner. 

B. EFFECTS OF TRUST 

The inclusion of the trust module in the CG Model was shown to have a 

strong influence on the rate of change in issue stance of entities. This 

collaborates with the findings in Pollock’s (2011) implementation; however, the 

outcomes of the test scenarios were shown to converge towards the same 

steady state regardless of the trust setting. The trust module thus serves as a 

buffer that delays the impact of actions in the area of operations, as its current 

form (as used in the test scenarios) only act to reject information. However, there 

is potential for it to influence scenario outcome, depending on the time frame 

allocated, and the frequency of actions occurring in the scenario. 

C. OTHER FACTORS 

The initial test scenarios demonstrated the strong impact that input 

parameters for a CG Model scenario can have. In line with the findings of earlier 

studies (Papadopoulos, 2010; Pollock, 2011), careful selection of these factors is 

crucial in order to build a realistic scenario that matches user requirements and 

expectations of agent behavior. The test cases showed, in particular, that the 

initial stance of the population was extremely significant.  

D. TRACEABILITY OF ENTITY BEHAVIOR 

The complexity of interactions in the CG Model makes tracing of entity 

behavior rather challenging. The process adopted in this study demonstrated the 

need to explore effects of different components of the CG at multiple levels, 
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ranging from the isolation of single factors to larger scenarios with multiple 

parameters being evaluated. The dataloggers built into the existing CG Model 

served as valuable tool for recording the immense amount of data generated in 

each replication and design point. 

The experimentation done in this thesis has assisted the ongoing 

development of the CG Model. Several revisions of the code were made to adjust 

settings and rectify minor anomalies in the entity behaviors. The creation of new 

dataloggers by TRAC-MTRY programmers would also provide for future testing 

and evaluation efforts, and improve the traceability of entity behavior. 

E. FUTURE WORK AND RECOMMENDATIONS 

The analysis of the effects of decision methods in the CG Model revealed 

a few aspects of the cognitive architecture that could be improved. The greedy 

reinforcement learning approach used for the RPD method and the limitation on 

state-action pair association in the EL method are two key areas that could be 

investigated for future developments. 

In terms of analysis and testing of the cognitive architecture, several areas 

have been identified that could benefit from further study: 

1. The test scenarios used in this study utilized only two entity 

prototypes, which posed a constraint on the extent of differences in homophily 

and possible interactions between them. Expansion of the scenario to include 

more agent types would serve to test the effect of homophily and 

communications to a greater extent. 

2. The EL method is applicable to a wide range of actions that entities 

could undertake in the CG Model. The testing of infrastructure-related actions in 

this study was limited by the lack of accounting for entities’ existing states 

(current resource provider). Testing of the EL method in other contexts, in 
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particular for scenarios or actions that are less/not dependent on state would 

serve to build up further understanding of the action selection process in the CG 

Model. 

3. The current implementation of trust in the CG Model acts to restrict 

information flow to an entity. An opposite effect could be modeled such that an 

entity receiving percepts from a highly trusted counterpart would be influenced to 

a greater extent than normal. This would allow shifts in scenario outcomes in 

either direction as a result of trust, instead of the single-direction “buffering” effect 

that was observed in this study. However, such an implementation would 

increase the complexity of the CG Model even further.  

This study has shown that the decision methods and trust module in the 

cognitive architecture are significant components in the CG Model. However, 

their effects are not always visible in terms of measurable outcomes such as 

issue stance of entities and overall trends in agent behavior. The test scenarios 

involved simplistic settings and did not exhibit any degradation of performance 

(e.g., computation / simulation time). However, with full-scale wargaming 

scenarios, the removal or deactivation of some components may become an 

acceptable tradeoff.  
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